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Abstract

Over the past two decades, we have witnessed an exponential increase of data production
in the world. So-called big data generally come from transactional systems, and even more
so from the Internet of Things and social media. They are mainly characterized by volume,
velocity, variety and veracity issues. Big data-related issues strongly challenge traditional
data management and analysis systems. The concept of data lake was introduced to address
them. A data lake is a large, raw data repository that stores and manages all company data
bearing any format. However, the data lake concept remains ambiguous or fuzzy for many
researchers and practitioners, who often confuse it with the Hadoop technology. Thus, we
provide in this paper a comprehensive state of the art of the different approaches to data lake
design. We particularly focus on data lake architectures and metadata management, which
are key issues in successful data lakes. We also discuss the pros and cons of data lakes and
their design alternatives.

Keywords Data lakes - Data lake architectures - Metadata management -
Metadata modeling

1 Introduction

The 21st century is marked by an exponential growth of the amount of data produced in
the world. This is notably induced by the fast development of the Internet of Things (IoT)
and social media. Yet, while big data represent a tremendous opportunity for various orga-
nizations, they come in such volume, speed, heterogeneous sources and structures that they
exceed the capabilities of traditional management systems for their collection, storage and
processing in a reasonable time (Miloslavskaya and Tolstoy 2016). A time-tested solution
for big data management and processing is data warehousing. A data warehouse is indeed
an integrated and historical storage system that is specifically designed to analyze data.
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However, while data warehouses are still relevant and very powerful for structured data,
semi-structured and unstructured data induce great challenges for data warehouses. Yet, the
majority of big data is unstructured (Miloslavskaya and Tolstoy 2016). Thus, the concept
of data lake was introduced to address big data issues, especially those induced by data
variety.

A data lake is a very large data storage, management and analysis system that handles any
data format. It is currently quite popular and trendy both in the industry and academia. Yet,
the concept of data lake is not straightforward for everybody. A survey conducted in 2016
indeed revealed that 35% of the respondents considered data lakes as a simple marketing
label for a preexisting technology, i.e., Apache Hadoop (Grosser et al. 2016).

Knowledge about the concept of the data lake has since evolved, but some miscon-
ceptions still exist, presumably because most of data lakes design approaches are abstract
sketches from the industry that provide few theoretical or implementation details (Quix and
Hai 2018). Therefore, a survey can be useful to give researchers and practitioners a better
comprehension of the data lake concept and its design alternatives.

To the best of our knowledge, the only literature reviews about data lakes are all quite
brief and/or focused on a specific topic, e.g., data lake concepts and definitions (Couto
et al. 2019; Madera and Laurent 2016), the technologies used for implementing data lakes
(Mathis 2017) or data lakes inherent issues (Giebler et al. 2019; Quix and Hai 2018).
Admittedly, the report proposed in Russom (2017) is quite extensive, but it adopts a
purely industrial view. Thus, we adopt in this paper a wider scope to propose a more
comprehensive state of the art of the different approaches to design and exploit a data
lake. We particularly focus on data lake architectures and metadata management, which
lie at the base of any data lake project and are the most commonly cited issues in the
literature (Fig. 1).

More precisely, we first review data lake definitions and complement the best existing
one. Then, we investigate the architectures and technologies used for the implementation of
data lakes, and propose a new typology of data lake architectures. Our second main focus
is metadata management, which is a primordial issue to avoid turning a data lake into an
inoperable, so-called data swamp. We notably classify data lake metadata and introduce the
features that are necessary to achieve a full metadata system. We also discuss the pros and
cons of data lakes.

Eventually, note that we do not review other important topics, such as data ingestion,
data governance and security in data lakes, because they are currently little addressed in the
literature, but could still presumably be the subject of another full survey.
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Fig. 1 Issues addressed in this paper
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The remainder of this paper is organized as follows. In Section 2, we define the data
lake concept. In Section 3, we review data lake architectures and technologies to help users
choose the right approach and tools. In Section 4, we extensively review and discuss meta-
data management. Eventually, we recapitulate the pros and cons of data lakes in Section 5
and conclude the paper in Section 6 with a mind map of the key concepts we introduce, as
well as current open research issues.

2 Data lake definitions
2.1 Definitions from the literature

The concept of data lake was introduced by Dixon as a solution to perceived shortcomings
of datamarts, which are business-specific subdivisions of data warehouses that allow only
subsets of questions to be answered (Dixon 2010). In the literature, data lakes are also
refered to as data reservoirs (Chessell et al. 2014) and data hubs (Ganore 2015; Laskowski
2016), although the terms data lake are the most frequent. Dixon envisions a data lake as
a large storage system for raw, heterogeneous data, fed by multiple data sources, and that
allows users to explore, extract and analyze the data.

Subsequently, part of the literature considered data lakes as an equivalent to the Hadoop
technology (Fang 2015; Ganore 2015; O’Leary 2014). According to this point of view,
the concept of data lake refers to a methodology for using free or low-cost technologies,
typically Hadoop, for storing, processing and exploring raw data within a company (Fang
2015).

The systematic association of data lakes to low cost technologies is becoming minority
in the literature, as the data lake concept is now also associated with proprietary cloud
solutions such as Azure or IBM (Madera and Laurent 2016; Sirosh 2016) and various data
management systems such as NoSQL solutions and multistores. However, it can still be
viewed as a data-driven design pattern for data management (Russom 2017).

More consensually, a data lake may be viewed as a central repository where data of all
formats are stored without a strict schema, for future analyses (Couto et al. 2019; Khine and
Wang 2017; Mathis 2017). This definition is based on two key characteristics of data lakes:
data variety and the schema-on-read approach, also known as late binding (Fang 2015),
which implies that schema and data requirements are not fixed until data querying (Khine
and Wang 2017; Maccioni and Torlone 2018; Stein and Morrison 2014). This is the opposite
to the schema-on-write approach used in data warehouses.

However, the variety/schema-on-read definition may be considered fuzzy because it
gives little detail about the characteristics of a data lake. Thus, Madera and Laurent intro-
duce a more complete definition where a data lake is a logical view of all data sources
and datasets in their raw format, accessible by data scientists or statisticians for knowledge
extraction (Madera and Laurent 2016).

More interestingly, this definition is complemented by a set of features that a data lake
should include:

data quality is provided by a set of metadata;

the lake is controlled by data governance policy tools;

usage of the lake is limited to statisticians and data scientists;
the lake integrates data of all types and formats;

the data lake has a logical and physical organization.

Nk
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2.2 Discussion and new definition

Madera and Laurent’s definition of data lakes is presumably the most precise, as it defines
the requirements that a data lake must meet (Section 2.1). However, some points in this
definition are debatable.

The authors indeed restrain the use of the lake to data specialists and, as a consequence,
exclude business experts for security reasons. Yet, in our opinion, it is entirely possible
to allow controlled access to this type of users through a navigation or analysis software
layer.

Moreover, we do not share the vision of the data lake as a logical view over data sources,
since some data sources may be external to an organization, and therefore to the data lake.
Since Dixon explicitly states that lake data come from data sources (Dixon 2010), including
data sources into the lake may therefore be considered contrary to the spirit of data lakes.

Finally, although quite complete, Madera and Laurent’s definition omits an essential
property of data lakes: scalability (Khine and Wang 2017; Miloslavskaya and Tolstoy 2016).
Since a data lake is intended for big data storage and processing, it is indeed essential to
address this issue. Thence, we amend Madera and Laurent’s definition to bring it in line
with our vision and introduce scalability (Sawadogo et al. 2019).

Definition 1 A data lake is a scalable storage and analysis system for data of any type,
retained in their native format and used mainly by data specialists (statisticians, data
scientists or analysts) for knowledge extraction. Its characteristics include:

a metadata catalog that enforces data quality;
data governance policies and tools;
accessibility to various kinds of users;
integration of any type of data;

a logical and physical organization;
scalability in terms of storage and processing.

AN .

3 Data lake architectures and technologies

Existing reviews on data lake architectures commonly distinguish pond and zone archi-
tectures (Giebler et al. 2019; Ravat and Zhao 2019a). However, this categorization may
sometimes be fuzzy. Thus, we introduce in Section 3.1 a new manner to classify data lakes
architectures that we call Functional x Maturity. In addition, we present in Section 3.2 a list
of possible technologies to implement a data lake. Eventually, we investigate in Section 3.3
how a data lake system can be associated with a data warehouse in an enterprise data
architecture.

3.1 Data lake architectures

3.1.1 Zone architectures

Pond architecture Inmon designs a data lake as a set of data ponds (Inmon 2016). A
data pond can be viewed as a subdivision of a data lake dealing with data of a spe-

cific type. According to Dixon’s specifications, each data pond is associated with a
specialized storage system, some specific data processing and conditioning (i.e., data
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transformation/preparation) and a relevant analysis service. More precisely, Inmon identi-
fies five data ponds (Fig. 2).

1. The raw data pond deals with newly ingested, raw data. It is actually a transit zone,
since data are then conditioned and transferred into another data pond, i.e., either the
analog, application or textual data pond. The raw data pond, unlike the other ponds, is
not associated with any metadata system.

2. Data stored in the analog data pond are characterized by a very high frequency of
measurements, i.e., they come in with high velocity. Typically, semi-structured data
from the IoT are processed in the analog data pond.

3. Data ingested in the application data pond come from software applications, and
are thus generally structured data from relational Database Management Systems
(DBMSs). Such data are integrated, transformed and prepared for analysis; and Inmon
actually considers that the application data pond is a data warehouse.

4. The textual data pond manages unstructured, textual data. It features a textual
disambiguation process to ease textual data analysis.

5. The purpose of the archival data pond is to save the data that are not actively used,
but might still be needed in the future. Archived data may originate from the analog,
application and textual data ponds.

Zone architectures So-called zone architectures assign data to a zone according to their
degree of refinement (Giebler et al. 2019). For instance, Zaloni’s data lake (LaPlante and
Sharma 2016) adopts a six-zone architecture (Fig. 3).

1. The transient loading zone deals with data under ingestion. Here, basic data quality
checks are performed.

2. The raw data zone handles data in near raw format coming from the transient zone.

The trusted zone is where data are transferred once standardized and cleansed.

4. From the trusted area, data move into the discovery sandbox where they can be
accessed by data scientists through data wrangling or data discovery operations.

5. On top of the discovery sandbox, the consumption zone allows business users to run
“what if” scenarios through dashboard tools.

6. The governance zone finally allows to manage, monitor and govern metadata, data
quality, a data catalog and security.

e

However, this is but one of several variants of zone architectures. Such architectures
indeed generally differ in the number and characteristics of zones (Giebler et al. 2019), e.g.,

Raw
data pond
Storage Storage Storage
Processing Processing Processing

Analog data pond Application data pond Textual data pond

—

Archive
data pond

Fig.2 Data flow in a pond architecture
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Fig.3 Zaloni’s zone architecture (LaPlante and Sharma 2016)

some architectures include a transient zone (LaPlante and Sharma 2016; Tharrington 2017;
Zikopoulos et al. 2015) while others do not (Hai et al. 2016; Ravat and Zhao 2019a).

A particular zone architecture often mentioned in the data lake literature is the lambda
architecture (John and Misra 2017; Mathis 2017). It indeed stands out since it includes two
data processing zones: a batch processing zone for bulk data and a real-time processing zone
for fast data from the IoT (John and Misra 2017). These two zones help handling fast data
as well as bulk data in an adapted and specialized way.

Discussion In both pond and zone architectures, data are pre-processed. Thus, analyses are
quick and easy. However, this come at the cost of data loss in the pond architectures, since
raw data are deleted when transferred to other ponds. The drawbacks of the many zone
architectures depend on each variant. For example, in Zaloni’s architecture (LaPlante and
Sharma 2016), data flow across six areas, which may lead to multiple copies of the data
and, therefore, difficulties in controlling data lineage. In the Lamda architecture (John and
Misra 2017), speed and batch processing components follow different paradigms. Thus, data
scientists must handle two distinct logics for cross analyses (Mathis 2017), which makes
data analysis harder, overall.

Moreover, the distinction of data lake architectures into pond and zone approaches is not
so crisp in our opinion. The pond architecture may indeed be considered as a variant of
zone architecture, since data location depends on the refinement level of data, as in zone
architectures. In addition, some zone architectures include a global storage zone where raw
and cleansed data are stored altogether (John and Misra 2017; Quix and Hai 2018), which
contradicts the definition of zone architectures, i.e., components depend on the degree of
data refinement.

3.1.2 Functional x maturity architectures

To overcome the contradictions of the pond/zone categorization, we propose an alternative
way to group data lake architectures regarding the type of criteria used to define compo-
nents. As a result, we distinguish functional architectures, data maturity-based architectures
and hybrid architectures (Fig. 4).

Functional architectures follow some basic functions to define a lake’s components. Data
lake basic functions typically include (LaPlante and Sharma 2016):

1. adata ingestion function to connect with data sources;
2. adata storage function to persist raw as well as refined data;
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Zikopoulos et al. (2015)

S Laplante and Sharma (2016)
Tharrington (2017)
Maturity-based Hybrid Functional }
Architectures | Architectures| Architectures John and Misra (2017)

Quix and Hai (2018)
Mehmood et al. (2019)

Inmon (2016)
Ravat and Zhao (2019)

Fig.4 Architecture typology proposal

3. adata processing function;
4. adata access function to allow raw and refined data querying.

Quix and Hai, as well as Mehmood et al., base their data lake architectures on these
functions (Mehmood et al. 2019; Quix and Hai 2018). Similarly, John and Misra’s lambda
architecture (John and Misra 2017) may be considered as a functional architecture, since its
components represent data lake functions such as storage, processing and serving.

Data maturity-based architectures are data lake architectures where components are
defined regarding data refinement level. In other words, it is constituted of most zone architec-
tures. A good representative is Zaloni’s data lake architecture (LaPlante and Sharma 2016),
where common basic zones are a transient zone, a raw data zone, a trusted data zone and a
refined data zone (LaPlante and Sharma 2016; Tharrington 2017; Zikopoulos et al. 2015).

Hybrid architectures are data lake architectures where the identified components depend
on both data lake functions and data refinement. Inmon’s pond architecture is actually a
hybrid architecture (Inmon 2016). On one hand, it is a data maturity-based architecture,
since raw data are managed in a special component, i.e., the raw data pond, while refined
data are managed in other ponds, i.e., the textual, analog and application data ponds. But on
the other hand, the pond architecture is also functional because Inmon’s specifications con-
sider some storage and process components distributed across data ponds (Fig. 2). Ravat and
Zhao also propose such an hybrid data lake architecture (Fig. 5 (Ravat and Zhao 2019a)).

Discussion Functional architectures have the advantage of clearly highlighting the func-
tions to implement for a given data lake, which helps match easily with the required
technologies. By contrast, data maturity-based architectures are useful to plan and organize
the data lifecycle. Both approaches are thus limited, since they only focus on a unique point
of view, while it is important in our opinion to take both functionality and data maturity into
account when designing a data lake.

In consequence, we advocate for hybrid approaches. However, existing hybrid architec-
ture can still be improved. For instance, in Inmon’s data pond approach, raw data are deleted
once they are refined. This process may induce some data loss, which is contrary to the spirit
of data lakes. In Ravat and Zhao’s proposal, data access seems only possible for refined
data. Such limitations hint that a more complete hybrid data lake architecture is still needed
nowadays.
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Fig.5 Ravat and Zhao’s hybrid architecture (Ravat and Zhao 2019a)

3.2 Technologies for data lakes

Most data lake implementations are based on the Apache Hadoop ecosystem (Couto et al.
2019; Khine and Wang 2017). Hadoop has indeed the advantage of providing both storage
with the Hadoop Distributed File System (HDFS) and data processing tools via MapReduce
or Spark. However, Hadoop is not the only suitable technology to implement a data lake.
In this section, we go beyond Hadoop to review usable tools to implement data lake basic
functions.

3.2.1 Dataingestion

Ingestion technologies help physically transfer data from data sources into a data lake. A
first category of tools includes software that iteratively collects data through pre-designed
and industrialized jobs. Most such tools are proposed by the Apache Foundation, and can
also serve to aggregate, convert and clean data before ingestion. They include Flink and
Samza (distributed stream processing frameworks), Flume (a Hadoop log transfer service),
Kafka (a framework providing real time data pipelines and stream processing applications)
and Sqoop (a framework for data integration from SQL and NoSQL DBMSs into Hadoop)
(John and Misra 2017; Mathis 2017; Suriarachchi and Plale 2016).

A second category of data ingestion technologies is made of common data transfer tools
and protocols (wget, rsync, FTP, HTTP, etc.), which are used by the data lake manager
within data ingestion scripts. They have the key advantage to be readily available and widely
understood (Terrizzano et al. 2015). In a similar way, some Application Programming Inter-
faces (APIs) are available for data retrieval and transfer from the Web into a data lake. For
instance, CKAN and Socrata provide APISs to access a catalogue of open data and associated
metadata (Terrizzano et al. 2015).

3.2.2 Data storage

We distinguish two main approaches to store data in data lakes. The first way consists in
using classic databases for storage. Some data lakes indeed use relational DBMSs such
as MySQL, PostgreSQL or Oracle to store structured data (Beheshti et al. 2017; Khine
and Wang 2017). However, relational DBMSs are ill-adapted to semi-structured, and even
more so to unstructured data. Thus, NoSQL (Not only SQL) DBMSs are usually used
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instead (Beheshti et al. 2017; Giebler et al. 2019; Khine and Wang 2017). Moreover, assum-
ing that data variety is the norm in data lakes, a multi-paradigm storage system is particularly
relevant (Nogueira et al. 2018). Such so-called multistore systems manage multiple DBMSs,
each matching a specific storage need.

The second main way to store data and the most used is HDFS storage (in about 75%
of data lakes (Russom 2017)). HDFS is a distributed storage system that offers a very high
scalability and handles all types of data (John and Misra 2017). Thus, it is well suited for
schema-free and bulk storage that are needed for unstructured data. Another advantage of
this technology is the distribution of data that allows high fault-tolerance. However, HDFS
alone is not sufficient to handle all data formats, especially structured data. Thus, it should
ideally be combined with relational and/or NoSQL DBMSs.

3.2.3 Data processing

In data lakes, data processing is very often performed with MapReduce (Couto et al. 2019;
John and Misra 2017; Khine and Wang 2017; Mathis 2017; Stein and Morrison 2014; Suri-
arachchi and Plale 2016), a parallel data processing paradigm provided by Apache Hadoop.
MapReduce is well-suited to very large data, but is less efficient for fast data because it
works on disk (Tiao 2018). Thus, alternative processing frameworks are used, from which
the most famous is Apache Spark. Spark works like MapReduce, but adopts a full in-
memory approach instead of using the file system for storing intermediate results. Thence,
Spark is particularly suitable for real-time processing. Similarly, Apache Flink and Apache
Storm are also suitable for real-time data processing (John and Misra 2017; Khine and
Wang 2017; Mathis 2017; Suriarachchi and Plale 2016; Tiao 2018). Nevertheless, these two
approaches can be simultaneously implemented in a data lake, with MapReduce being ded-
icated to voluminous data and stream-processing engines to velocious data (John and Misra
2017; Suriarachchi and Plale 2016).

3.2.4 Data access

In data lakes, data may be accessed through classical query languages such as SQL for rela-
tional DBMSs, JSONiq for MongoDB, XQuery for XML DBMSs or SPARQL for RDF
resources (Farid et al. 2016; Fauduet and Peyrard 2010; Hai et al. 2016; Laskowski 2016;
Pathirana 2015). However, this does not allow simultaneously querying across heteroge-
neous databases, while data lakes do store heterogeneous data, and thus typically require
heterogeneous storage systems.

One solution to this issue is to adopt the query techniques from multistores
(Section 3.2.2) (Nogueira et al. 2018). For example, Spark SQL and SQL++ may be used
to query both relational DBMSs and semi-structured data in JSON format. In addition,
the Scalable Query Rewriting Engine (SQRE) handles graph databases (Hai et al. 2018).
Finally, CloudMdsQL also helps simultaneously query multiple relational and NoSQL
DBMSs (Leclercq and Savonnet 2018). Quite similarly, Apache Phoenix can be used to
automatically convert SQL queries into a NoSQL query language, for example. Apache
Drill allows joining data from multiple storage systems (Beheshti et al. 2017). Data stored
in HDFS can also be accessed using Apache Pig (John and Misra 2017).

Eventually, business users, who require interactive and user-friendly tools for data report-
ing and visualization tasks, widely use dashboard services such as Microsoft Power BI and
Tableau over data lakes (Couto et al. 2019; Russom 2017).
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3.3 Combining data lakes and data warehouses

There are in the literature two main approaches to combine a data lake and a data warehouse
in a global data management system. The first approach pertains to using a data lake as the
data source of a data warehouse (Section 3.3.1). The second considers data warehouses as
components of data lakes (Section 3.3.2).

3.3.1 Data lake sourcing a data warehouse

This approach aims to take advantage of the specific characteristics of both data lakes and
data warehouses. Since data lakes allow an easier and cheaper storage of large amount of
raw data, they can be considered as staging areas or Operational Data Stores (ODSs) (Fang
2015; Russom 2017), i.e., intermediary data stores ahead of data warehouses that gather
operational data from several sources before the ETL process takes place.

With a data lake sourcing a data warehouse, possibly with semi-structured data, industri-
alized OLAP analyses are possible over the lake’s data, while on-demand, ad-hoc analyses
are still possible directly from the data lake (Fig. 6).

3.3.2 Data warehouse within a data lake

As detailed in Section 3.1.1, Inmon proposes an architecture based on a subdivision of data
lakes into so-called data ponds (Inmon 2016). For Inmon, structured data ponds sourced
from operational applications are, plain and simple, data warehouses. Thus, this approach
acts on a conception of data lakes as extensions of data warehouses.

3.3.3 Discussion

When a data lake sources a data warehouse (Section 3.3.1), there is a clear functional sep-
aration, as data warehouses and data lakes are specialized in industrialized and on-demand
analyses, respectively. However, this comes with a data siloing issue.

By contrast, the data siloing syndrome can be reduced in Inmon’s approach
(Section 3.3.2), as all data are managed and processed in a unique global platform. Hence,
diverse data can easily be combined through cross-reference analyses, which would be
impossible if data were managed separately. In addition, building a data warehouse inside
a global data lake may improve data lifecycle control. That is, it should be easier to track,
and thus to reproduce processes applied to the data that are ingested in the data warehouse,
via the data lake’s tracking system.

On-demand analyses .
Scripts/programs -

SQL/MDX | Industrialized
queries analyses

Batch processing
—————
ETL process

Fig.6 Data lake and data warehouse architecture
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4 Metadata management in data lakes

Data ingested in data lakes bear no explicit schema (Miloslavskaya and Tolstoy 2016),
which can easily turn a data lake into a data swamp in the absence of an efficient metadata
system (Suriarachchi and Plale 2016). Thence, metadata management plays an essential
role in data lakes (Laskowski 2016; Khine and Wang 2017). In this section, we detail the
metadata management techniques used in data lakes. First, we identify the metadata that are
relevant to data lakes. Then, we review how metadata can be organized. We also investi-
gate metadata extraction tools and techniques. Finally, we provide an inventory of desirable
features in metadata systems.

4.1 Metadata categories

We identify in the literature two main typologies of metadata dedicated to data lakes. The
first one distinguishes functional metadata, while the second classifies metadata with respect
to structural metadata types.

4.1.1 Functional metadata

Oram introduces a metadata classification in three categories, with respect to the way they
are gathered (Oram 2015).

1. Business metadata are defined as the set of descriptions that make the data more
understandable and define business rules. More concretely, these are typically data field
names and integrity constraints. Such metadata are usually defined by business users at
the data ingestion stage.

2. Operational metadata are information automatically generated during data process-
ing. They include descriptions of the source and target data, e.g., data location, file size,
number of records, etc., as well as process information.

3. Technical metadata express how data are represented, including data format (e.g., raw
text, JPEG image, JSON document, etc.), structure or schema. The data structure con-
sists in characteristics such as names, types, lengths, etc. They are commonly obtained
from a DBMS for structured data, or via custom techniques during the data maturation
stage.

Diamantini et al. enhance this typology with a generic metadata model (Diamantini et al.
2018) and show that business, operational and technical metadata sometimes intersect. For
instance, data fields relate both to business and technical metadata, since they are defined in
data schemas by business users. Similarly, data formats may be considered as both technical
and operational metadata, and so on (Fig. 7).

4.1.2 Structural metadata

In this classification, Sawadogo et al. categorize metadata with respect to the “objects”
they relate to Sawadogo et al. (2019). The notion of object may be viewed as a gener-
alization of the dataset concept (Maccioni and Torlone 2018), i.e., an object may be a
relational or spreadsheet table in a structured data context, or a simple document (e.g.,
XML document, image file, video file, textual document, etc.) in a semi-structured or
unstructured data context. Thence, we use the term “object” in the remainder of this

paper.
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Fig.7 Functional metadata
model (Diamantini et al. 2018)

Operational metadata
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Intra-object metadata belong to a set of characteristics associated with single objects in
the lake. They are subdivided into four main subcategories.

1.

Properties provide an object’s general description. They are generally retrieved from
the filesystem as key-value pairs, e.g., file name and size, location, date of last
modification, etc.

Previsualization and summary metadata aim to provide an overview of the content
or structure of an object. For instance, metadata can be extracted data schemas for
structured and semi-structured data, or wordclouds for textual data.

Version and representation metadata are made of altered data. When a new data object
o' is generated from existing object o in the data lake, o’ may be considered as metadata
for 0. Version metadata are obtained through data updates, while representation meta-
data come from data refining operations. For instance, a refining operation may consist
of vectorizing a textual document into a bag-of-words for further automatic processing.
Semantic metadata involve annotations that describe the meaning of data in an object.
They include such information as title, description, categorization, descriptive tags, etc.
They often allow data linking. Semantic metadata can be either generated using seman-
tic resources such as ontologies, or manually added by business users (Hai et al. 2016;
Quix et al. 2016).

Inter-object metadata represent links between two or more objects. They are subdivided
into three categories.

1.

Object groupings organize objects into collections. Any object may be associated with
several collections. Such links can be automatically deduced from some intra-object
metadata such as tags, data format, language, owner, etc.

Similarity links express the strength of likeness between objects. They are obtained
via common or custom similarity measures. For instance, Maccioni and Torlone (2018)
define the affinity and joinability measures to express the similarity between semi-
structured objects.
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3. Parenthood links aim to save data lineage, i.e., when a new object is created from the
combination of several others, these metadata record the process. Parenthood links are
thus automatically generated during data joins.

Global metadata are data structures that provide a context layer to make data processing
and analysis easier. Global metadata are not directly associated with any specific object, but
potentially concern the entire lake. There are three subcategories of global metadata.

1. Semantic resources are knowledge bases such as ontologies, taxonomies, thesauri,
etc., which notably help enhance analyses. For instance, an ontology can be used to
automatically extend a term-based query with equivalent terms. Semantic resources are
generally obtained from the Internet or manually built.

2. Indexes (including inverted indexes) enhance term-based or pattern-based data
retrieval. They are automatically built and enriched by an indexing system.

3. Logs track user interactions with the data lake, which can be simple, e.g., user
connection or disconnection, or more complex, e.g., a job running.

4.1.3 Discussion

Oram’s metadata classification is the most cited, especially in the industrial literature (Dia-
mantini et al. 2018; LaPlante and Sharma 2016; Ravat and Zhao 2019b; Russom 2017),
presumably because it is inspired from metadata categories from data warehouses (Ravat
and Zhao 2019a). Thus, its adoption seems easier and more natural for practitioners who
are already working with it.

Yet, we favor the second metadata classification, because it includes most of the fea-
tures defined by Oram’s. Business metadata are indeed comparable to semantic metadata.
Operational metadata may be considered as logs and technical metadata are equivalent to
previsualization metadata. Hence, the structural metadata categorization can be considered
as an extension, as well as a generalization, of the functional metadata classification.

Moreover, Oram’s classification is quite fuzzy when applied in the context of data lakes.
Diamantini et al. indeed show that functional metadata intersect (Section 4.1.1) (Diamantini
et al. 2018). Therefore, practitioners who do not know this typology may be confused when
using it to identify and organize metadata in a data lake.

Table 1 summarizes commonalities and differences between the two metadata cat-
egorizations presented above. The comparison addresses the type of information both
inventories provide.

Table 1 Comparison of Oram’s

and Sawadogo et al’s metadata Type of information Functional Structural
categories metadata metadata
Basic characteristics of data v v

(size, format, etc.)
Data semantics v v

(tags, descriptions, etc.)

Data history v v
Data linkage v
User interactions v
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4.2 Metadata modeling

There are in the literature two main approaches to represent a data lake’s metadata system.
The first, most common approach, adopts a graph view, while the second exploits data vault
modeling.

4.2.1 Graph models

Most models that manage data lake metadata systems are based on a graph approach. We
identify three main subcategories of graph-based metadata models with respect to the main
features they target.

Data provenance-centered graph models mostly manage metadata tracing, i.e., the
information about activities, data objects and users who interact with a specific object (Suri-
arachchi and Plale 2016). In other words, they track the pedigree of data objects (Halevy
et al. 2016). Provenance representations are usually built using a directed acyclic graph
(DAG) where nodes represent entities such as users, roles or objects (Beheshti et al. 2017;
Hellerstein et al. 2017). Edges are used to express and describe interactions between enti-
ties, e.g., through a simple timestamp, activity type (read, create, modify) (Beheshti et al.
2017), system status (CPU, RAM, bandwith) (Suriarachchi and Plale 2016) or even the
script used (Hellerstein et al. 2017). For instance Fig. 8a shows a basic provenance model
with nodes representing data objects and edges symbolizing operations. Data provenance
tracking helps ensure the traceability and repeatability of processes in data lakes. Thus,
provenance metadata can be used to understand, explain and repair inconsistencies in the
data (Beheshti et al. 2017). They may also serve to protect sensitive data, by detecting
intrusions (Suriarachchi and Plale 2016).

Similarity-centered graph models describe the metadata system as an undirected graph
where nodes are data objects and edges express a similarity between objects. Such a
similarity can be specified either through a weighted or unweighted edge. Weighted edges
show the similarity strength, when a formal similarity measure is used, e.g., affinity and
joinability (Maccioni and Torlone 2018) (Fig. 8b). In contrast, unweighted edges serve to
simply detect whether two objects are connected (Farrugia et al. 2016). Such a graph design
allows network analyses over a data lake (Farrugia et al. 2016), e.g., discovering communi-
ties or calculating the centrality of nodes, and thus their importance in the lake. Another use

(=00 (pory—=—{m2)
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- 0.45

a) Provenance graph b) Similarity graph

Fig.8 Sample graph-based metadata models
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of data similarity may be to automatically recommend to lake users some data related to the
data they currently observe (Maccioni and Torlone 2018).

Composition-centered graph models help decompose each data object into several inher-
ent elements. The lake is viewed as a DAG where nodes represent objects or attributes, e.g.,
columns, tags, etc., and edges from any node A to any node B express the constraint B € A
(Diamantini et al. 2018; Halevy et al. 2016; Nargesian et al. 2018). This organization helps
users navigate through the data (Nargesian et al. 2018). It can also be used as a basis to
detect connections between objects. For instance, Diamantini et al. (2018) used a simple
string measure to detect links between heterogeneous objects by comparing their respective
tags.

4.2.2 Data vault

A data lake aims at ingesting new data possibly bearing various structures. Thus, its
metadata system needs to be flexible to easily tackle new data schemas. Nogueira et al.
propose the use of a data vault to address this issue (Nogueira et al. 2018). Data vaults are
indeed alternative logical models to data warehouse star schemas that, unlike star schemas,
allow easy schema evolution (Linstedt 2011). Data vault modeling involves three types of
entities (Hultgren 2016).

1. A hub represents a business concept, e.g., customer, vendor, sale or product in a
business decision system.

2. Alink represents a relationship between two or more hubs.

3. Satellites contain descriptive information associated with a hub or a link. Each satellite
is attached to a unique hub or link. In contrast, links or hubs may be associated with
any number of satellites.

In Nogueira et al.’s proposal, metadata common to all objects, e.g., title, category, date
and location, are stored in hubs; while metadata specific to some objects only, e.g.,
language for textual documents or publisher for books, are stored in satellites (Fig. 9).
Moreover, any new type of object would have its specific metadata stored in a new
satellite.

4.2.3 Discussion

Data vault modeling is seldom associated with data lakes in the literature, presumably
because it is primarily associated with data warehouses. Yet, this approach ensures meta-
data schema evolutivity, which is required to build an efficient data lake. Another advantage
of data vault modeling is that, unlike graph models, it can be intuitively implemented in a
relational DBMS. However, several adaptations are still needed for this model to deal with
data linkage as in graph models.

Graph models, though requiring more specific storage systems such as RDF or graph
DBMSs, are still advantageous because they allow to automatically enrich the lake with
information that facilitate and enhance future analyses. Nevertheless, the three subcategories
of graph models need to be all integrated together for this purpose. This remains an open
issue because at most two of these graph approaches are simultaneously implemented in
metadata systems from the literature (Diamantini et al. 2018; Halevy et al. 2016). The
MEDAL metadata model does include all three subcategories of graph models (Sawadogo
et al. 2019), but is not implemented yet.
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SAT_PHOTO ||SAT_ARTICLE ||SAT_INVENTORY|| SAT_BOOK
CodePhoto Language Property Rights
Provenance Note Link Publisher
'E'J.'atetime b:e:tetime b:atetime 'E')'atetime
Source Source Source Source

HUB_CATEGORY SAT_DATE
Category ID Epoch
Datetime DepositDate
Source UpdateDate

Datetime
Source

HUB_TITLE HUB_DATE
Title ID LINK_DOCUMENT Date ID
Datetime Datetime

Document_ID
Datetime
Source

Source Source

SAT_TITLE ) SAT_LOCATION
Title HUB_LOCATION
Authors Adress
Description Location_ID Additionallnfo
Keywords Datetime Referf-:‘nce
Datetime Source Datetime
Source Source

Fig.9 Sample metadata vault model (Nogueira et al. 2018)

4.3 Metadata generation

Most of the data ingestion tools from Section 3.2.1 can also serve to extract meta-
data. For instance, Suriarachchi and Plale use Apache Flume to retrieve data prove-
nance in a data lake (Suriarachchi and Plale 2016). Similarly, properties and semantic
metadata can be obtained through specialized protocols such as the Comprehensive
Knowledge Archive Network (CKAN), an open data storage management system (Terriz-
zano et al. 2015).

A second kind of technologies is more specific to metadata generation. For instance,
Apache Tika helps detect the MIME type and language of objects (Quix et al. 2016). Other
tools such as Open Calais and IBM’s Alchemy API can also enrich data through inherent
entity identification, relationship inference and event detection (Farid et al. 2016).

Ad-hoc algorithms can also generate metadata. For example, Singh et al. show that
Bayesian models allow detecting links between data attributes (Singh et al. 2016). Similarly,
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several authors propose algorithms to discover schemas or constraints in semi-structured
data (Beheshti et al. 2017; Klettke et al. 2017; Quix et al. 2016).

Last but not least, Apache Atlas (The Apache Software Foundation 2019), a widely
used metadata framework (Russom 2017), features advanced metadata generation methods
through so-called hooks, which are native or custom scripts that rely on logs to generate
metadata. Hooks notably help Atlas automatically extract lineage metadata and propagate
tags on all derivations of tagged data.

4.4 Features of data lake metadata systems

A data lake made inoperable by lack of proper metadata management is called a data swamp
(Khine and Wang 2017), data dump (Inmon 2016; Suriarachchi and Plale 2016) or one-way
data lake (Inmon 2016), with data swamp being the most common terms. In such a flawed
data lake, data are ingested, but can never be extracted. Thus, a data swamp is unable to
ensure any analysis. Yet, to the best of our knowledge, there is no objective way to measure
or compare the efficiency of data lake metadata systems. Therefore, we first introduce in
this section a list of expected features for a metadata system. Then, we present a comparison
of eighteen data lake metadata systems with respect to these features.

4.4.1 Feature identification

Sawadogo et al. identify six features that a data lake metadata system should ideally
implement to be considered comprehensive (Sawadogo et al. 2019).

1. Semantic Enrichment (SE) is also known as semantic annotation (Hai et al. 2016)
or semantic profiling (Ansari et al. 2018). It involves adding information such as title,
tags, description and more to make the data comprehensible (Terrizzano et al. 2015).
This is commonly done using knowledge bases such as ontologies (Ansari et al. 2018).
Semantic annotation plays a vital role in data lakes, since it makes the data meaningful
by providing informative summaries (Ansari et al. 2018). In addition, semantic meta-
data could be the basis of link generation between data (Quix et al. 2016). For instance,
data objects with the same tags could be considered linked.

2. Data Indexing (DI) is commonly used in the information retrieval and database
domains to quickly find a data object. Data indexing is done by building and enriching
some data structure that enables efficient data retrieval from the lake. Indexing can serve
for both simple keyword-based retrieval and more complex querying using patterns. All
data, whether structured, semi-structured or unstructured, benefit from indexing (Singh
et al. 2016).

3. Link Generation (LG) consists in identifying and integrating links between lake data.
This can be done either by ingesting pre-existing links from data sources or by detecting
new links. Link generation allows additional analyses. For instance, similarity links can
serve to recommend to lake users data close to the data they currently use (Maccioni and
Torlone 2018). In the same line, data links can be used to automatically detect clusters
of strongly linked data (Farrugia et al. 2016).

4. Data Polymorphism (DP) is the simultaneous management of several data represen-
tations in the lake. A data representation of, e.g., a textual document, may be a tag
cloud or a vector of term frequencies. Semi-structured and unstructured data need to
be at least partially transformed to be automatically processed (Diamantini et al. 2018).
Thus, data polymorphism is relevant as it allows to store and reuse transformed data.
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This makes analyses easier and faster by avoiding the repetition of certain processes
(Stefanowski et al. 2017).

5. Data Versioning (DV) expresses a metadata system’s ability to manage update oper-
ations, while retaining the previous data states. It is very relevant to data lakes, since
it ensures process reproducibility and the detection and correction of inconsistencies
(Bhattacherjee and Deshpande 2018). Moreover, data versioning allows branching and
concurrent data evolution (Hellerstein et al. 2017).

6. Usage Tracking (UT) consists in managing information about user interactions
with the lake. Such interactions are commonly creation, read and update operations.
This allows to transparently follow the evolution of data objects. In addition, usage
tracking can serve for data security, either by explaining data inconsistencies or
through intrusion detection. Usage tracking and data versioning are related, since
update interactions often induce new data versions. However, they are distinct
features as they can be implemented independently (Beheshti et al. 2017; Suriarachchi
and Plale 2016).

4.4.2 Metadata system comparison

We present in Table 2 a comparison of eighteen state-of-the-art metadata systems and
models with respect to the features they implement (Sawadogo et al. 2019). We distin-
guish metadata models from implementations. Models are indeed quite theoretical and
describe the conceptual organization of metadata. In contrast, implementations follow a

Table 2 Comparison of data lake metadata systems (Sawadogo et al. 2019)

System Type SE DI LG DP DV uT
SPAR (Fauduet and Peyrard 2010) o v v v v
Alrehamy and Walker (2015) ¢ v v

Terrizzano et al. (2015) ¢ v Ve Ve Ve
Constance (Hai et al. 2016) ¢ v v

GEMMS (Quix et al. 2016) O v

CLAMS (Farid et al. 2016) ¢ v

Suriarachchi and Plale (2016) O v v
Singh et al. (2016) ¢ v v v v

Farrugia et al. (2016) ¢ v

GOODS (Halevy et al. 2016) ¢ v v v v v
CoreDB (Beheshti et al. 2017) ¢ v v
Ground (Hellerstein et al. 2017) Ot v v v v
KAYAK (Maccioni and Torlone 2018) ¢ v v v

CoreKG (Beheshti et al. 2018) ¢ v v v v v
Diamantini et al. (2018) o v v v

Mehmood et al. (2019) ¢ v v

CODAL (Sawadogo et al. 2019) ¢ v v v v

MEDAL (Sawadogo et al. 2019) O v v v v v

¢ : Implementations ¢ : Metadata models

f : Model or implementation akin to a data lake
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more operational approach, but are usually little detailed, mainly focusing on a description
of the resulting system instead of the applied methodology. This comparison also considers
metadata systems that are not explicitly associated with the concept of data lake by their
authors, but whose characteristics allow to be considered as such, e.g., the Ground metadata
model (Hellerstein et al. 2017).

The comparison shows that the most comprehensive metadata system with respect to
the features we propose is MEDAL, with all features covered. However, it is not imple-
mented yet. The next best systems are GOODS and CoreKG, with five out of six features
implemented. However, they are black box metadata systems, with few details on metadata
conceptual organization. Thus, the Ground metadata model may be preferred, since it is
much more detailed and almost as complete (four out of six features).

Eventually, two of the six features defined in Section 4.4.1 may be considered advanced.
Data polymorphism and data versioning are indeed mainly found in the most complete sys-
tems such as GOODS, CoreKG and Ground. Their absence from most of metadata systems
can thus be attributed to implementation complexity.

5 Pros and cons of data lakes

In this section, we account for the benefits of using a data lake instead of more tradi-
tional data management systems, but also identify the pitfalls that may correspond to these
expected benefits.

An important motivating feature in data lakes is cheap storage. Data lakes are ten to one
hundred times less expensive to deploy than traditional decision-oriented databases. This
can be attributed to the usage of open-source technologies such as HDFS (Khine and Wang
2017; Stein and Morrison 2014). Another reason is that the cloud storage often used to build
data lakes reduces the cost of storage technologies. That is, the data lake owner pays only
for actually used resources. However, the use of HDFS may still fuel misconceptions, with
the concept of data lake remaining ambiguous for many potential users. It is indeed often
considered either as a synonym or a marketing label closely related to the HDFS technology
(Alrehamy and Walker 2015; Grosser et al. 2016).

Another feature that lies at the core of the data lake concept is data fidelity. Unlike in
traditional decision-oriented databases, original data are indeed preserved in a data lake to
avoid any data loss that could occur from data preprocessing and transformation operations
(Ganore 2015; Stein and Morrison 2014). Yet, data fidelity induces a high risk of data
inconsistency in data lakes, due to data integration from multiple, disparate sources without
any transformation (O’Leary 2014).

One of the main benefits of data lakes is that they allow exploiting and analyzing
unstructured data (Ganore 2015; Laskowski 2016; Stein and Morrison 2014). This is a
significant advantage when dealing with big data, which are predominantly unstructured
(Miloslavskaya and Tolstoy 2016). Moreover, due to the schema-on-read approach, data
lakes can comply with any data type and format (Cha et al. 2018; Ganore 2015; Khine
and Wang 2017; Madera and Laurent 2016). Thence, data lakes enable a wider range of
analyses than traditional decision-oriented databases, i.e., data warehouses and datamarts,
and thus show better flexibility and agility. However, although the concept of data lake
dates back from 2010, it has only been put in practice in the mid-2010’s. Thus, imple-
mentations vary, are still maturing and there is a lack of methodological and technical
standards, which sustains confusions about data lakes. Finally, due to the absence of an
explicit schema, data access services and APIs are essential to enable knowledge extraction
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in a data lake. In other words, a data access service is a must to successfully build a
data lake (Alrehamy and Walker 2015; Inmon 2016), while such a service is not always
present.

Next, an acclaimed advantage of data lakes over data warehouses is real-time data
ingestion. Data are indeed ingested in data lakes without any transformation, which avoids
any time lag between data extraction from sources and their ingestion in the data lake
(Ganore 2015; Laskowski 2016). But as a consequence, a data lake requires an efficient
metadata system for ensuring data access. However, the problem lies in the “how”, i.e., the
use of inappropriate methods or technologies to build the metadata system can easily turn
the data lake into an inoperable data swamp (Alrehamy and Walker 2015).

More technically, data lakes and related analyses are typically implemented using dis-
tributed technologies, e.g., HDFS, MapReduce, Apache Spark, Elasticsearch, etc. Such
technologies usually provide a high scalability (Fang 2015; Miloslavskaya and Tolstoy
2016). Furthermore, most technologies used in data lakes have replication mechanisms, e.g.,
Elasticsearch, HDFS, etc. Such technologies allow a high resilience to both hardware and
software failure and enforce fault tolerance (John and Misra 2017).

Eventually, data lakes are often viewed as sandboxes where analysts can “play”, i.e.,
access and prepare data so as to perform various, specific, on-the-fly analyses (Russom
2017; Stein and Morrison 2014). However, such a scenario requires expertise. Data lake
users are indeed typically data scientists (Khine and Wang 2017; Madera and Laurent 2016),
which contrasts with traditional decision systems, where business users are able to oper-
ate the system. Thus, a data lake induces a greater need for specific, and therefore more
expensive, profiles. Data scientists must indeed master a wide knowledge and panoply of
technologies.

Moreover, with the integration in data lakes of structured, semi-structured and unstruc-
tured, expert data scientists can discover links and correlations between heterogeneous
data (Ganore 2015). Data lakes also allow to easily integrate data “as is” from external
sources, e.g., the Web or social media. Such external data can then be associated with propri-
etary data to generate new knowledge through cross-analyses (Laskowski 2016). However,
several statistical and Artificial Intelligence (Al) approaches are not originally designed for
parallel operations, nor for streaming data, e.g., K-means or K-Nearest Neighbors. There-
fore, it is necessary to readjust classical statistical and AI approaches to match the
distributed environments often used in data lakes (O’Leary 2014), which sometimes proves
difficult.

6 Conclusion

In this survey paper, we establish a comprehensive state of the art of the different approaches
to design, and conceptually build a data lake. First, we state the definitions of the data lake
concept and complement the best existing one. Second, we investigate alternative architec-
tures and technologies for data lakes, and propose a new typology of data lake architectures.
Third, we review and discuss the metadata management techniques used in data lakes. We
notably classify metadata and introduce the features that are necessary to achieve a full
metadata system. Fourth, we discuss the pros and cons of data lakes. Fifth, we summarize
by a mind map the key concepts introduced in this paper (Fig. 10).

Eventually, in echo to the topics we chose not to address in this paper (Section 1), we
would like to open the discussion on important current research issues in the field of data
lakes.
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Fig. 10 Key concepts investigated in this survey

Data integration and transformation have long been recurring issues. Though delayed,
they are still present in data lakes and made even more challenging by big data volume,
variety, velocity and lack of veracity. Moreover, when transforming such data, User-Defined
Functions (UDFs) must very often be used (MapReduce tasks, typically). In ETL and ELT
processes, UDFs are much more difficult to optimize than classical queries, an issue that is
not addressed yet by the literature (Stefanowski et al. 2017).

With data storage solutions currently going beyond HDFS in data lakes, data inter-
rogation through metadata is still a challenge. Multistores and polystores indeed provide
unified solutions for structured and semi-structured data, but do not address unstructured
data, which are currently queried separately through index stores. Moreover, when consid-
ering data gravity (Madera and Laurent 2016), virtual data integration becomes a relevant
solution. Yet, mediation approaches are likely to require new, big data-tailored query
optimization and caching approaches (Quix and Hai 2018; Stefanowski et al. 2017).

Unstructured datasets although unanimously acknowledged as ubiquitous and sources
of crucial information, are very little specifically addressed in data lake-related lit-
erature. Index storage and text mining are usually mentioned, but there is no deep
thinking about global querying or analysis solutions. Moreover, exploiting other types
of unstructured data but text, e.g., images, sounds and videos, is not even envisaged as
of today.

Again, although all actors in the data lake domain stress the importance of data gov-
ernance to avoid a data lake turning into a data swamp, data quality, security, life cycle
management and metadata lineage are viewed as risks rather than issues to address a priori
in data lakes (Madera and Laurent 2016). Data governance principles are indeed currently
seldom turned into actual solutions.

Finally, data security is currently addressed from a technical point of view in data
lakes, i.e., through access and privilege control, network isolation, e.g., with Docker tools
(Cha et al. 2018), data encryption and secure search engines (Maroto 2018). However,
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beyond these issues and those already addressed by data governance (integrity, consistency,
availability) and/or related to the European General Data Protection Regulation (GDPR),
by storing and cross-analyzing large volumes of various data, data lakes allow mashups
that potentially induce serious breaches of data privacy (Joss 2016). Such issues are still
researched as of today.
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